LLMの浅い理解と深い理解: AIは本当に言葉を理解しているのか?

生成AIは驚くほど流暢な文章を作成します。しかし一方で、事実とは異なる内容をもっともらしく語る「ハルシネーション」や、論理的に破綻した回答を生成することも少なくありません。なぜAIは、「言葉」の操り方は完璧なのに「意味」 […]

コンテキスト・エンジニアリング 2.0: 究極の知性へのロードマップと設計原則

近年、大規模言語モデル(LLM)とAIエージェントの急速な台頭により、システムにおける「コンテキスト」(文脈情報)の役割に大きな注目が集まっています。コンテキストウィンドウに配置された情報が、モデルの性能に著しく影響する […]

大規模言語モデルによる知識グラフ構築の最前線

知識グラフ(Knowledge Graphs, KG)は、構造化された知識を表現し、統合し、そして推論するための基盤となるインフラストラクチャとして機能します。意味検索や質問応答など、様々なアプリケーションの土台を支える […]

Conversational Search入門: LLM時代の検索技術最前線

現代のデジタル社会において、検索エンジンは情報アクセスに不可欠な存在となっています。しかし、単一のキーワードや短いフレーズに依存する従来の検索では、ユーザーの複雑で曖昧な情報ニーズに十分に応えきれません。 近年、人工知能 […]

音声ディープフェイク検出の最前線

深層学習の目覚ましい進化は、音声合成技術に革命をもたらしました。これは、パーソナライズされた仮想アシスタントの実現や、発話能力を失った方々が再び「声」を取り戻す手助けをするなど、計り知れない利益をもたらす可能性を秘めてい […]

TruthTorchLMによるLLMのハルシネーション検出

大規模言語モデル(LLM)の目覚ましい進化は生活やビジネスに革新をもたらす一方で、事実に基づかない情報を生成するハルシネーションが問題となっています。特に医療や金融といった高リスクな分野では、LLM出力の信頼性と正確性が […]

コンテキスト・エンジニアリングの現状と未来

近年、大規模言語モデル(LLM)の進化は目覚ましく、その性能は提供される「コンテキスト(文脈情報)」によって根本的に左右されます。これまで、LLMの能力向上においては「プロンプト・エンジニアリング」と呼ばれる、より良い指 […]

UnslothではじめるLLMのFine-tuning

大規模言語モデル(LLM)を特定のタスクやドメインに特化させる「ファインチューニング」。その可能性に多くの開発者が惹きつけられる一方で、「膨大な計算コストがかかる」「高性能なGPUがなければ手も足も出ない」といった高いハ […]

LLMのハルシネーションはなぜ避けられないのか?

近年、ChatGPTやLlamaといった大規模言語モデル(LLM)は目覚ましい発展を遂げ、自然言語処理を中心として研究、産業、社会に大きな影響を与えています。しかし、その一方で、「ハルシネーション」(幻覚)と呼ばれる、も […]