組込みシステムと量子化ニューラルネットワーク
深層ニューラルネットワーク(DNN)は、画像分類、音声認識、物体検出といった分野で優れた性能を発揮しますが、その実現には膨大な計算資源とメモリを要求します。一方で、モノのインターネット(IoT)の急速な普及に伴い、マイク […]
LLMを活用したDeep Researchエージェント開発-設計、アーキテクチャ、実装について
大規模言語モデル(LLM)の急速な進化は、近年、人間が数時間を要するような複雑な調査・分析プロセスを自律的に完了させるDeep Research(ディープリサーチ)エージェントという新しいカテゴリーのAIシステムを誕生さ […]
DINOv3: 自己教師あり学習による汎用ビジョン基盤モデル
高精度なAIモデルの構築には、大量かつ高品質な手動アノテーションが不可欠ですが、これは時間、コスト、労力の大きなボトルネックとなっています。特に医療画像や衛星画像のような特殊なドメインでは、ラベリングが極めて困難です。 […]
自然言語処理のためのデータ拡張手法
近年、大規模言語モデル(LLM)は自然言語理解と生成において目覚ましい能力を示していますが、その性能は、膨大かつ高品質な学習データの存在に大きく依存します。現実には、十分な訓練データが不足したり、既存データの品質が低いと […]
アノテーション不要 - 機械学習エンジニアのための自己教師あり学習入門
近年、深層学習は様々な分野で目覚ましい進歩を遂げていますが、その成功の多くは大量のラベル付きデータに大きく依存しています。しかし、このデータの収集とアノテーション作業は非常に費用と時間がかかり、さらにアノテーションのバイ […]
機械学習における分布シフト(分布外データ)への対応
機械学習(ML)モデル、特に深層ニューラルネットワーク(DNN)は、コンピュータービジョンや自然言語処理といった多岐にわたる分野で、これまでにない成功を収めています。これらのモデルは通常、i.i.d.(独立同分布)という […]
コンテキスト・エンジニアリングの現状と未来
近年、大規模言語モデル(LLM)の進化は目覚ましく、その性能は提供される「コンテキスト(文脈情報)」によって根本的に左右されます。これまで、LLMの能力向上においては「プロンプト・エンジニアリング」と呼ばれる、より良い指 […]
LLMのハルシネーションはなぜ避けられないのか?
近年、ChatGPTやLlamaといった大規模言語モデル(LLM)は目覚ましい発展を遂げ、自然言語処理を中心として研究、産業、社会に大きな影響を与えています。しかし、その一方で、「ハルシネーション」(幻覚)と呼ばれる、も […]
TinyMLからTinyDLへ-エッジAIの進化
IoTデバイスの普及に伴い、エッジAIの重要性は増すばかりです。しかし、クラウドAIには遅延やプライバシーの問題がつきものです。この課題を解決する技術として「TinyML」が知られていますが、近年その進化版である「Tin […]
YOLOv13: ハイパーグラフで実現する高速・高精度リアルタイム物体検出
リアルタイム物体検出の分野では、YOLOシリーズがその優れた精度と計算効率により、長らく支配的な地位を占めてきました。しかし、YOLO11以前の畳み込みアーキテクチャやYOLOv12の自己注意メカニズムは、局所的な情報集 […]