宇宙物理学における深層学習
現代の宇宙物理学は、GaiaやDESI、LSSTといった大規模な天文サーベイによって、ビッグデータの時代へと突入しました。数十年前の観測が数千のソースを扱っていたのに対し、現在では数十億もの天体の観測データが日常的に生成 […]
大規模言語モデルによる知識グラフ構築の最前線
知識グラフ(Knowledge Graphs, KG)は、構造化された知識を表現し、統合し、そして推論するための基盤となるインフラストラクチャとして機能します。意味検索や質問応答など、様々なアプリケーションの土台を支える […]
LLMの腐敗: 訓練データと推論能力の関係
大規模言語モデル(LLM)は、人間と同様の認知機能を獲得するため、インターネット上の膨大なデータから学習します。しかし、その訓練プロセスにおいて、人間社会で問題視されている「Brain Rot(脳の腐敗)」と類似の現象が […]
LLMLingua: LLMのためのプロンプト圧縮技術
昨今、大規模言語モデル(LLM)は、様々なアプリケーションで活用されています。LLMの能力を最大限に引き出すため、Chain-of-Thought (CoT) や In-Context Learning (ICL)、Re […]
LangCodeではじめるAIコードアシスタント入門
AIコードアシスタントは、コードの自動生成だけでなく、既存の複雑なコードベースの理解やタスクの自動実行を通じて、開発者の作業を大きく変えつつあります。今回は、最近リリースされた「LangCode」と呼ばれるツールを紹介し […]
機械学習モデルにおける不確実性
今日、機械学習モデルは、私たちの生活やビジネスのあらゆる側面に浸透しています。しかしながら、その高い予測精度とは裏腹に、モデルの信頼性や頑健性には依然として重大な課題が残されています。 実際、レベル5の自動運転車がカメラ […]
GPyTorch ではじめる深層ガウス過程入門
ガウス過程(GP: Gaussian Process)は、関数そのものに確率分布を定義するノンパラメトリックなモデルです。このモデルの最大の強みは、単なる予測値だけでなく、その不確実性(信頼区間)を定量的に示せる点にあり […]
LLMによるソフトウェアテストの現状とこれから
ソフトウェアテストは、ソフトウェアエンジニアリングにおける基本的な要素であり、プロジェクト予算の15~80%もの割合を占めることがあります。この数値が示す通り、テスト工程はソフトウェアの品質と信頼性を保証する上で極めて重 […]
ベイジアンネットワーク入門:pgmpyによる因果探索と因果推論の実践
近年の機械学習(ML)モデルは、ビッグデータ解析において非常に高い予測精度を達成しています。しかし、その意思決定に至るプロセスが不透明な「ブラックボックス」となってしまう課題が指摘されています。データから相関関係を発見す […]
scikit-upliftで始めるアップリフトモデリング入門
データ駆動型の意思決定において、機械学習モデルは「どの顧客が商品を購入する可能性が高いか」という相関関係の予測に広く活用されています。しかし、マーケティング施策や介入の予算を真に最適化するためには、「我々の施策(介入)に […]