距離学習入門 ~様々なタスクに応用できる機械学習手法~

距離学習(Metric Learning)は、データ間の類似度を学習する 機械学習の一手法です。従来の教師あり学習が、与えられたデータから特定のラベルや値を予測することを目的とするのに対し、距離学習は、データ間の関係性そ […]

GradCAM: 深層学習モデルの判断根拠を可視化してみる

深層学習は、画像認識、自然言語処理など、様々な分野で応用されています。しかし、深層学習モデルは、非常に複雑な構造のため、なぜそのような判断を下すのか、その根拠を人間が理解することが困難です。 このブラックボックスである機 […]

LitServe: 機械学習モデルの効率的なデプロイ

機械学習モデルは、FlaskやFlastAPIなどのWebフレームワークを使用して、WebAPIとしてデプロイされることが一般的です。これらのフレームワークは、WebAPIを構築するための便利な機能が豊富に含まれています […]

機械学習における表形式データのオーグメンテーション

機械学習において、表形式データは最も広く使用されているデータ形式の1つです。しかし、高品質な表形式データを大量に取得することは依然として大きな課題となっています。この課題を克服するために、オーグメンテーション技術が注目さ […]

PySR: シンボリック回帰とは何か?

シンボリック回帰(Symbolic Regression、記号回帰とも呼ばれます)は、データを説明する数式を自動的に見つけ出す機械学習手法です。この手法では、関数の形式を事前に決めることなく、与えられたデータに最も合う数 […]

Pythonによる粒子群最適化

数理最適化を応用した最適化問題の解決には、微分不可能な関数にも対応可能なメタヒューリスティック手法が広く利用されています。その中でも、生物の群れ行動を模倣した群知能は、複雑な問題に対して高い適応性を示します。今回は、代表 […]

機械学習モデルの構築におけるラベルノイズ問題と対策

機械学習モデルの性能は、学習データの質に大きく左右されます。特に、データに含まれるラベル(正解データ)が誤っていたり、不正確であったりする場合、モデルの精度や信頼性が著しく低下する可能性があります。このようなラベルの誤り […]

クラス不均衡データにおける機械学習モデルの構築

クラス不均衡データとは、あるクラスのデータが圧倒的に多く、他のクラスのデータが非常に少ない状態のデータセットを指します。このようなデータで機械学習モデルを構築すると、多数派クラスに偏った予測をしてしまい、少数派クラスの予 […]