GluonTS入門: Pythonによる確率的時系列モデリング
時系列予測とは、過去の観測データに見られるパターンが将来も継続するという前提に基づき、未来の値を予測する技術です。これは、電力網における需給バランスの維持や、レストランや小売業における在庫の最適化など、ビジネスの様々な場 […]
DeepOD入門: ディープラーニングによる異常検知の実践
システム運用や製造現場のデータ分析において、異常検知(Anomaly Detection:通常とは異なるデータを見つけ出す手法)は欠かせない技術です。ですが、データが複雑になるにつれて、従来の統計的な手法では十分な精度を […]
PyTorchで始める Deep Unfolding 入門: 数理最適化とニューラルネットワークの融合
近年、深層学習は画像認識などで圧倒的な性能を示していますが、信号処理や画像再構成などの逆問題において、その推論過程が不透明(ブラックボックス)である点が実務的な課題となっています,。特に信頼性が重視されるミッションクリテ […]
promptolution: Pythonによるプロンプト最適化の実践
大規模言語モデル(LLM)を活用する際、その出力性能は入力プロンプト(指示文)の品質に大きく左右されます。この「プロンプトの感度(sensitivity)」は非常に高く、意味的に類似しているように見えるわずかな表現の違い […]
iLTM: 表形式データ向けの大規模基盤モデル
表形式データのモデリングにおいて、長らく実務のデファクトスタンダードとして君臨してきたのは勾配ブースティング決定木(GBDT)でした。画像や自然言語の分野で深層学習が席巻する中、表形式データだけは「GBDTが最適解」とい […]
QueryGym: LLMベースの Query Reformulation フレームワーク
検索システムの改善において、ユーザーの曖昧な入力意図を補完する「クエリ拡張(Query Reformulation)」は、LLMの登場により劇的な進化を遂げています。しかし、論文で提案される有望な手法も、実装コードが散逸 […]
Omnilingual ASR: 1600言語以上対応!オープンソース音声認識モデル
音声認識技術(ASR: Automatic Speech Recognition)の進化は目覚ましいものがありますが、その恩恵はインターネット上でリソースが豊富な一部の言語に偏重しており、世界の7,000以上の言語の大部 […]
CMA-ES入門: 進化戦略によるブラックボックス最適化
現代のエンジニアリングにおいて、最適な解を見つけ出す「最適化」は常に重要な課題です。しかし、目的関数の内部構造が不明確である、あるいは解析的に勾配を計算できない場合、その問題はブラックボックス最適化(Black-Box […]
LLMLingua: LLMのためのプロンプト圧縮技術
昨今、大規模言語モデル(LLM)は、様々なアプリケーションで活用されています。LLMの能力を最大限に引き出すため、Chain-of-Thought (CoT) や In-Context Learning (ICL)、Re […]
LangCodeではじめるAIコードアシスタント入門
AIコードアシスタントは、コードの自動生成だけでなく、既存の複雑なコードベースの理解やタスクの自動実行を通じて、開発者の作業を大きく変えつつあります。今回は、最近リリースされた「LangCode」と呼ばれるツールを紹介し […]